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NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS 

TECHNICAL NOTE 2209 

FREE OSCILLATIONS OF AN ATMOSPHERE IN WHICH TEMPERATURE 

INCREASES LINEARLY WITH HEIGHT 

By C. L. Pekeris 

SUMMARY 

It is shown that when the temperature in the atmosphere increases 
linearly with height, the speed of propagation of long waves does not 
approach a limit with increasing wave length, as in the case of an 
atmosphere in which the temperature at great heights is assumed to be 
constant or decreasing, but increases linearly with the period.  The 
group velocity ultimately also increases linearly with the period and 
becomes equal to half the phase velocity. The region of maximum energy 
of the oscillation is shifted to increasingly higher elevations as the 
period is increased. Whereas, in an atmosphere where the temperature 
gradient at great heights is negative or zero, the tides are similar to 
those in a uniform ocean of equivalent depth H (about 8 km, depending 
on the assumed vertical temperature distribution), the superposition of 
an outer envelope with a positive temperature gradient introduces a 
radical change into the nature of the tide.  Insofar as it is'still 
legitimate to refer the tides in such an atmosphere to those in an ocean 
of equivalent depth H,  it can be said that H becomes a function of 
the period, which increases indefinitely with the period.  The bearing 
of these results on the resonance theory of atmospheric tides is discussed 

INTRODUCTION 

The fact that the solar semidiurnal tide in the atmosphere is about 
100 times larger than the equilibrium value led Kelvin to the conclusion 
that the atmosphere possesses a free period of tidal oscillation of 
12 solar hours.  The resonance period of the atmosphere must be within 
h minutes of half a solar day in order to account for the observed ampli- 
fication and for the fact that the moon, whose tidal force is more than 
twice as large as that of the sun, excites a barometric oscillation having 
an amplitude of only one-sixteenth that of the solar wave.  If the vertical 
temperature distribution in the atmosphere, assumed horizontally strati- 
fied, is known, it is possible to compute its free period of tidal oscil- 
lation following a method due to the work of G. I. Taylor (reference l). 
According to this method one first determines the speed of propagation of 
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long waves .V in a flat atmosphere having the same vertical temperature 
distribution.' The resonance period or periods of tidal oscillations of 
the atmosphere are then identical with those of an ocean of depth H 
enveloping the earth and are determined from the relation 

V = (gH l1/2 (1) 

The dependence of the free period of the ocean on its depth H is 
known from classical tidal theory.  For the solar semidiurnal oscilla- 
tion H = 7.57 kilometers ± 3 percent, and therefore V must be 
0.278 kilometer per second or 0.8l7c0, where c0 denotes the velocity 
of sound in the air next to the ground, that is, 3^ meters per second 
for an assumed surface temperature of 288 K.  On assuming a factor 
exp i(at - kx)  the divergence X of the wave motion is in the limit of 
long waves found to satisfy the equation 

/By dz  H 
dc2 

dz 
+ g(7 - 1) = 0       (2: 

2 c = 7RT 

H = a2/gk2 

V = a/k 

subject to the boundary conditions that at the ground the vertical com- 
ponent of the velocity w vanishes: 

w = (c2x/g) ■ + H[-7X + (c2/g)(dx/dz)] = 0 (3) 

and that the energy of wave motion per unit column of the atmosphere is 
not infinite.  If p(z)  denotes the density of the air as a function 
of height z then of the two independent solutions of equation (2) the 
one is accepted which gives a finite value for the energy integral U 

U = (1/2) /  p(z)(u2 + v2 + w2) dz (J+) 
0 

where u, v,  and w denote the components of velocity due to the 
wave motion. 
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When the temperature at great heights is assumed to be sufficiently- 
low, or decreasing, it is actually found (reference 2) that one of the 
solutions of equation (2) gives a finite value for U, while in the 
other the distribution of (u2 + v2 + w2) with height is such that U 
becomes infinite as the integral is extended to infinity. When, however, 
the temperature at great heights is assumed to increase linearly without 
limit, it is found that for both solutions of equation (2)  U becomes 
infinite, so that the question of the choice between the two solutions 
of equation (2) is left open. This is shown in a following section. 

This work was conducted under the sponsorship and with the financial 
assistance of the National Advisory Committee for Aeronautics. 

SYMBOLS 

A constant in equation (63) 

A, J, B, Y coefficients in equations (8) and (9) 

b coefficient in equation (52) 

C = sin Jt5/sin rt(S + n) 

c velocity of sound at any level 

CQ velocity of sound in air next to ground 

D = (2/7) x [(1 + n)^]1/2 

E = (8it/g)(l + n)c0[(l + n)^]"
1^ 

F confluent hypergeometric function 

Fj, F2, G defined by equations (33) 

Fo, F^, N defined by equations (3^a) 

F(0) Airy function (reference 3) 

g acceleration of gravity 

H depth in a uniform ocean 

I Bessel function with imaginary argument 
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J Bessel function with real argument 

K = T(l + 5) sin Jt(5 + n)/2n+1 sin «n 

k wave number 

M coefficient in equation (kj) 

m = [7.+ (7 - 1)(1 + nj]/7H 

n = (g/Rß) - 1 

P period of wave 

P Brunt's period (reference k) 

Q(u) function defined by equation (5*0 

R gas constant 

T temperature 

t timej in appendix B, the plane t 

U energy integral 

u, v, w components of velocity due to wave motion 

V speed of propagation of long waves; phase velocity 

W(x) Whittaker's function (reference 5) 

Wk m(z),  Mk m(z) defined by equations (19) and (20) 

x, z distances in x- and z-directions 

x roots of equation (35) 

xn value of x at ground 

y = 2^5x = 2^mz 

z0 level above which temperature increases linearly 
with height 

ß constant in equation (5) 

T function in equation (19) 
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7 . ratio of specific heats 

5 = -1 _ (n/2) + [T(1 + n)/2.J^ +  (CD/27T) 

e function in equation (k6) 

e =  (l/6)5~1/2   |^6 - x|3/2 

p density of air 

PQ undisturbed density 

cr frequency of wave 

T = cr2/gk = kH 

T   , T roots    T    of equation  (l6) 

cpx = 2|/mz  -   (nit/2)   - (3*A) 

cp2 = 2/mz + (n«/2)   + (n/k) 

X divergence of wave motion 

(jo = 7 + (7 - l)(l + n) 

APPARENT FAILURE OF ENERGY-INTEGRAL CRITERION FOR AN ATMOSPHERE 

IN WHICH TEMPERATURE INCREASES LINEARLY WITH HEIGHT 

Let the temperature    T    increase linearly with height above the 
level    zQ, 

T = ßz,   z > z0 

c
2 = 7RT = 7gz/(l + n) 

n =  (g/Rß)   -  1 

> 
(5) 

then one easily finds that the density decreases with height according 
to the power law 

p/p0 - (z/z0)-
n- (6) 
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Equation (2) then takes on the form 

(d2X/dz2) - (n/z)(dx/dz) + (m/z)x = 0 (7) 

m= [7 + (7 - 1)(1 + n^j/rH 

whose solution is 

x = Az(
1+n)/2J1+n(2^) + Bz(

1+11)/2Y1+n(2\Iiz") (8) 

when n is an integer, or 

X = Az(1+^/2J1+n(2Mmi) + Bz(
1+n)/2J_1.n(2X^) (9) 

when n is not an integer. 

In evaluating the energy integral U in equation (h)  for the purpose 
of making the choice between the solutions in equation (8) or in equa- 
tion (9),  one has, for a wave progressing in the x-direction, 

u = (i/gkH)(c2X - gw)l 
X      7 f (10) 

v = 0 J 

Since c2X Ä zX while, for large values of z,    dx/dz z  X it follows 
that at great heights both u and w vary like zX. Now for large 
values of z 

J1+n(2\J5z") S (itSmz)-
1/^ cos cp1 (11) 

9 = [2^ - (mt/2) - (3*A)J 

J (2\|mz)   £ (jtSmzJ-l-A cos cp2 (12) 

cp2  = [2\Jmz  +  (nit/2)   + («A)] 
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It follows that (u2 + v2 + w2] in the integrand of equation (k)  varies 

like zV2 cos2^. 1 or I/2 cos2^  for the two solutions of equa- 

tion (9), respectively. The kinetic energy per unit volume therefore 

increases ultimately with height like z1/2 and the energy integral U 
does not converge for either solution. . Not only does the energy-integral 
criterion not enahle one to make the choice between the two solutions of 
equation (2) but also neither solution yields a finite value for U. 

RESOLUTION OF DIFFICULTY WITS THE ENERGY INTEGRAL 

The result obtained in the previous section that for an atmosphere 
in which the temperature increases linearly with height the energy inte- 
gral of the wave motion diverges for both solutions of the wave equa- 
tion is hard to reconcile with the following physical considerations. 
A medium such as the atmosphere, which is bounded by a perfectly 
reflecting surface at the ground but is exposed to space on the other 
side, would be expected to be facilitated in sustaining a free oscilla- 
tion the more it is capable of diverting wave energy from great heights 
toward the ground. The more the upper atmosphere behaves like a reflector, 
the greater will be its trapping power for waves, and, with it, its 
ability to propagate waves to great ranges - a characteristic of free 
oscillations. Now it is known (references 6 to 8) that an atmosphere of 
constant temperature throughout can completely trap waves either in the 
whole spectrum or in a limited frequency range. This is also true for 
an atmosphere of the Taylor type in which the temperature is assumed to 
decrease at a constant rate in the troposphere and to remain constant in 
the stratosphere. Now when the temperature is constant, the rays ema- 
nating from a source situated in the atmosphere are rectilinear, and all 
but the horizontal rays are lost to space.  In the Taylor type atmosphere 
the rays are even bent upward in the troposphere, eventually to become 
rectilinear in the stratosphere.  In spite of these nonconservative prop- 
erties, both types of atmosphere are capable of sustaining free oscil- 
lations in certain frequency ranges.  In the case of an atmosphere with 
a linearly increasing temperature all the rays are bent downward, so 
that its trapping powers should be even greater. Yet, the divergence of 
the energy integral found in the previous section indicates a tendency 
to allow the waves to leak out to higher elevations. 

The resolution of this paradox lies in the fact that equation (2) 
for the divergence X is not exact but is an approximation for the 
limiting case of long waves. This approximation breaks down when the 
temperature increases indefinitely linearly with height. The exact 
equation for X is equation (13) 

dfX 
dz2 

+ (l. dc£. 2£] ix 
^2 dz 2    dz H c2 dz     Hc2 

►X = 0 (13) 
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with 

(1  - H2k2)w =   (c2x/g)   +|H -7X +   (c2/g)(dx/dzj| (Ik) 

replacing equation (3). Now in the limit of long waves, when the wave 
number k vanishes, the long-wave approximation is made by dropping 
the k2-term in equation (13).  This approximation is valid in an atmos- 
phere of constant or decreasing temperature.  In the case of an atmos- 
phere in which the temperature (and with it c2) increases linearly, with 
height, the terms in brackets in equation (13) decrease like l/z and 
eventually become smaller than the k2-term.  In fact at extremely large 
heights equation (13) reduces, for a given k, to 

(d2x/dz2) k2X. 0 (15) 

indicating that the appropriate solution for X ultimately varies like 
e~kz and not according to the power law that would follow from equa- 
tions (9), (11), and (12). When the complete equation (13) is used one 
finds that the solution having the factor e_:kz yields a finite value 
for the energy integral U in equation (k),  whereas the other solution, 
with the factor e^2, must be discarded because it gives a divergent 
value for U. With the complete wave equation (13) there is therefore 
no ambiguity as to the choice between the two independent solutions, nor 
is there any difficulty with the energy integral. 

Using the notation of equations (5) and putting 

x 

ÜD 

2kz 

a2/gk = kH 

-1 -   (n/2)   +   [T(1 + n)/2f]   +   ((ü/27T] 

7  +  (7  -  1)(1 + n) 

(16) 

equation  (13)  reduces to 

c(d2X/dx2)   -  n(dx/dx)   +   |B + 1 +  (n/2)   -   (x/^)]x = 0 (17) 
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Choosing the solution of equation (17) which is bounded at infinity, 

X = xn/2W(x) 
(25+2+n)   (1+n) 

2 2 

cl+5+ne-x/2   n        |s(5 + 1 + n)/x]  +  .   .   X 

(18) 

where W(x)  is Whittaker's function (reference 5, P- 337).  The expo- 
nential behavior of X for large values of x assures the convergence 
of integral (k)  for U, whereas in the second solution of equation (17); 

which behaves like x
_1~5ex/2 at infinity, the integral diverges. 

LIMITING FORM OF SOLUTION FOR LONG WAVES 

With the solution of the exact equation (13) given by equation (18) 
it becomes of interest to investigate the form it assumes in the limit 
of long wavelengths.  In particular the relation of this limiting form 
of equation (l8) to solution (9) of the approximate equation (2) is to 
be investigated, with a view of throwing light on the question of the 
choice of the proper linear combination of the two independent solutions 
appearing there. For this purpose the following relations (reference 5, 
PP- 337, 338, and 3^6) are used: 

Wk,m<z)  - /4 -m - 5 r(-2m)/r(i - m Mk,m<z)  + r(2m)/r t \ + m - k) Mk,-m(z) 

(19) 

Mi hm(z)  = z2      e"z/2F^| + m - k,  2m + 1,  z) 

Mk,-*(z)  = z2 ~V
Z
/

2
F(| - m - k,  1 - 2m,  Z) 

> (20) 

where F denotes the confluent hypergeometric function. Thus, for the 
case when n is not an integer there is obtained 

X(x) = [r(-l - n)/r(-5 - n - l)\ x1+ne-
x/2F(-S, 2 + n, x) + 

[r(l + n)/r(-5r|e-x/2F(-o - n - 1 - n, x) (21) 
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« 

X(x)  =   I[r(2 + 8 + n)  sin *(5 + n)]/(r(2 + n)  sin imjl x1+n
e-

x/2F(-8,  2 + 

n, x)  -  JT(1 + n)  X r(l + 5)  sin (rtB)/n|e-x/2F(-& - 1 - n,  -n, x) 

(22) 

where in the last transformation the following relation was used 

r(x) X T(l - x) = «/sin rtx (23) 

Passing now to the limit of long waves, 

T = ME « 1 
> (2k) 

8 ->o)/27T = m/2k » ll 

With 5 very large, the F-functions in equation (22) reduce to Bessel 
functions: 

F(-5, 2 + n, x)—>fl - 5x/(2 + n) + (5x)2/2(2 + n)(3 + n) + • • •"] = 

r(2 + n)(6x)-(n+1)/2Jn+1(2\Iox") (25) 

F(-B - 1 - n, -n, x)->r(-n)(Sx)(n+1)/2J_n_1(2NjÖx")       (26) 

It is important to observe that these limiting forms of the F's are 
valid only when both 8 » 1 and x « 8, for otherwise the series 
for F depends on the higher powers of x, when it is no longer legiti- 
mate to replace the factor 5 - k by 8 in the coefficients. Sub- 
stituting now equations (25) and (26) into equation (22) and performing 
some further reductions with the aid of equation (23), there is obtained 

X = K exp[I(y2/8&)] ^n+1Jn+1(y) + Cy^J.^y)]        (27) 
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(28) 
y = 2^x = 2/mz 

K = r(l + 5)   sin it(B + n)/2n+1 sin itn 

C = sin nS/sin ir(5 + n) (29) 

i 
Except for the factor exp L;(y2/8ö)],  which is slowly variable in the 
limit of large values of 5,  equation (27) is identical with equation (9). 
The ratio of constants B/A in the latter is now> however, no longer 
arbitrary but is a definite function C of 5,  as given in equation (29). 

The goal of determining the appropriate solution of the wave equation 
for an atmosphere with a linear increase of temperature has thus been 
achieved, but on closer study the physical implications of the results 
are rather disturbing.  In order to ascertain the physical significance 
of the parameter 8 the phase velocity and the period are determined. 
The phase velocity V is given by 

V/c0 = a/kc0 = (2/7) x gl  + n)c^]l/2(l/y)= D/y        (30) 

while the period of the wave P,  measured in seconds, is given by 

P = 2n/a  = (8rt/g)(l + n)c0[Ü + n)oT]~
l/2(s/y) s ES/y     (31) 

For n = U.5,  then D = 6.36 and E = 1080, while for n = 8.5, which 
is appropriate for the positive lapse rate prevailing in the NACA model 
atmosphere between 83 and 120 kilometers (reference 9),    D = 10.0 and 
E = ll80.  For V/CQ of the order of unity, the period P changes by 
about 3 minutes as 5 changes by unity.  But, since C(S)  in equation (29) 
is a periodic function of 8 of period unity and takes on all values 
between -00 and °° as 5 changes by 1, it follows that in the limit of 
long periods  X does not approach a fixed form but changes its character 
radically as the period is changed by only a few minutes. This increased 
sensitivity of  X to the period for an atmosphere with positive lapse 
rate is to be contrasted with the decreasing sensitivity to change's in 
period for atmospheres with zero or negative lapse rates. 
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FREE OSCILLATIONS OF AN ATMOSPHERE IN WHICH TEMPERATURE 

INCREASES LINEARLY WITH HEIGHT 

In order to gain more insight into the acoustic propagating prop- 
erties of an atmosphere with a constant positive temperature gradient, 
the free oscillations or such an atmosphere when it extends from the 
ground up will he investigated. Therefore the variation of the phase 
velocity V with the period P for the first and for the higher normal 
modes will he studied. Such a variation is shown, for example, hy 
curve I in figure 2, for the first mode of an atmosphere with constant 
negative temperature gradient (references 8 and 10). For a Taylor type 
atmosphere having the same negative temperature gradient in the tropo- 
sphere, the corresponding curve starts with a value of 0.86 at 
P = 2 minutes and reaches its limiting value of ahout 0.92 at 
P = k minutes (references 8 and 10). 

The divergence X from equation (22) can he written in the form 

x = xl+ne-x/2Fl _ Ge-
X/2F2 (32) 

with 

G = fr(l + n)r(2 + n)r(l + 5)  sin «nXsin ns]/[nr(2 + S + n) X sin *(8 +n)] 

Fx = F(-S,  2 + n,  X) 

F2 = F(-S - 1 - n,  -n,  x) 
(33) 

The possible free oscillations of the atmosphere are determined from the 
condition of the vanishing of the vertical component of velocity w at 
the ground, which, according to equation (1*0, is given hy 

(1 + n)(l - T
2
)(W//HX)  = -1 - n +  (x/2r)   + (x/x)(dx/dx)  = 0 (3*0 

With 

F3 = F(l -  5,   3  + n,  x) 

FJ4. = F(-5 - n,  1 - n,  x) 

D = F]_ - Gx 

N 

-1-n-r 
I  (3*»a) 

=  Ql + n)/x]Fi -   [B/(2 + nj\Y3 - G^S + 1 + n)/^*-1-11^ 
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equation (3*0  leads to the condition 

(1 + n)fl - T
2

VW/7HX)   = -(1 + n)  + (x/2) [(I/T)   - ll + XN/D = 0 

X = XQ 

where XQ denotes the value of x at the ground. 

(35) 

The problem of determining the dependence of the phase velocity    V 
on the period    P    involves the determination of the dependence of the 
roots    x    of equation (35)  on the parameter    5.    For a given    5    one 
first determines the two roots    T    of equation (l6); 

1=[7[S + 1 + (n/2)]  +  « 72[£ + 1 +  (n/2)]     -   (l + n)a>L        1/(1 + n) 

T2 = [7 [5 + 1 + (n/2)]  -  < 72§ + 1 + (n/2)]     -  (l + n)a> L       JAl + n) 

L (37) 

For each T one finds the root3 x of equation (35) and determines V 
and P from 

I" I1/2 
V/c0 = [2(1 + n)T/7xJ (38) 

1/2 
P = (2itc0/g)J2(l + n)//TxJ (39) 

The free oscillations of an atmosphere have been determined with 
n = k.5,  corresponding to a positive temperature gradient of about 
G.k    per kilometer. Figure 1 shows the variation of the roots x with 
5 for the two branches T^ and T2. It is shown in appendix A that 

for the first mode in the T -branch, which is shown by curve A in fig- 

ure I,  the lower end of the curve is given by 

x = 1.88(1 - 5)1/6-5 (lto) 

for sufficiently small values of x. With T2 = Vn> ^  follows from 

equations (38) and (39) that along this end of curve A, P—>°°, 
V/CQ-*

00
, and V/CQ—>(l/lO)P, when P is measured in minutes. Hence 

in an atmosphere with constant positive temperature gradient, the phase 
velocity does not approach a limit with increasing period but increases 
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linearly with the period. The same result applies to the higher modes. 
Figure 2 shows the function V(P) which results from the x(S)-curves in 
figure 1. It is shown in appendix B that in the T2-branch no waves can 
he propagated for periods less than k.5  minutes, which is Brunt's period 
(reference h)  determined from 

c2a2 = g2(7 _ D + g(dc2/dz) (kl) 

In all the modes V/cQ grows indefinitely with the period. 

It is of interest to see the type of dispersion one gets by using 
the "long wave" solution (27). Dropping the exponential term, 

dx/dy = yn+1Jn(y) " Cyn+1J.n(y) (*3) 

while the secular equation (35) reduces to 

-(l + n) + (ry2/^) + (y/2)[jn(y) - cj_n(y[|/[jn+i(y) + cJ_n_i(y)] = o 

m 
In this case one can solve directly for C,  since all the other terms 
do not depend explicitly on S: 

C = (jn(y) - [(I + n)(2/y) - (7y/2a.)]jn+1(y)|/|j_ri(y) + [?1 + n)(2/y) - 

(7y/aoJlj.np.1(y)| (^5) 

With C(B) given in equation (29), equation (U5) allows one to obtain 5 
as a function of y, from which one determines the function V(P) by 
using equations (30) and (31)- The results are shown in figure 3- 

It is seen that the general shape of the V(P)-curves is similar to 
that of the exact curves given in figure 2. The deviations are due to 
the fact that, in the upper right-hand corner, & is of the order of 
unity, for which the long-wave approximation cannot apply. The curves 
in figure 3 become also inaccurate as the cut-off period is approached, 
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because there y is of the order of 6, and the Bessel function approxi- 
mation in relations (25) and (26) breaks down. The analysis for this 
limiting case is given in appendix B. 

APPLICATION TO THEORY OF ATMOSPHERIC TIDES 

This investigation has shown that in an atmosphere where the temper- 
ature increases indefinitely with height at a constant rate, the acoustic 
propagation properties are radically different from those that have 
hitherto been encountered in the theory of atmospheric tides. The 
principal new feature is that the phase velocity V no longer reaches 
a limit for waves of long period. For atmospheres where V reaches a 
limit, the theory of atmospheric tides is simplified by an application 
of Taylor's theorem (reference 1), according to which the tides in "the 
atmosphere are equivalent to those in an ocean of uniform depth H = V /g. 
In our case, V grows indefinitely with the period, and, insofar as it 
is still legitimate to refer to an equivalent ocean of depth H, one 
may say that H depends on the period, ultimately increasing as the 
square of the period. What happens is that, as the period is increased, 
the distribution of energy of wave motion with height no longer approaches 
a fixed form, but the energy continues to spread to higher elevations as 
the period is increased. A discussion will not be given here of the 
nature of the tides in an atmosphere with constant positive temperature 
gradient extending from the ground up.  In such an atmosphere the tides 
are probably different from those in an ocean of fixed depth. An investi- 
gation of this problem would be in order if the evidence would continue 
to accumulate to the effect that the temperature in the ionosphere 
increases continuously with height. 

Pending such an investigation, suffice it to remark that there is 
no difficulty in treating the case where a layer with positive tempera- 
ture gradient is topped by an outer envelope of constant or decreasing 
temperature.  In that case the proper solution for the layer is given 
by equation (9), with B/A arbitrary.  It would also follow that in the 
absence of proof as to the temperature of the outer envelope of the atmos- 
phere one should not in theoretical studies allow an assumed positive 
gradient in an interior layer to extend through the outer envelope. The 
consequences of such an extrapolation of the temperature curve, if rigor- 
ously determined, are, in the light of the results of this investigation, 
likely to affect seriously the nature of the atmospheric tides. Any 
preliminary results obtained for an atmosphere with a positive tempera- 
ture gradient extending through the envelope should therefore be checked 
by comparing them with those for a modified atmosphere in which, say, 
the temperature in the outer envelope is assumed to be constant or 
decreasing with height. It would also be helpful to compute in each 
case the distribution with height of the energy density of the wave 
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motion (p/2)(u2 + v2 + w2) in order to assure that any segment of the 
temperature curve which is as yet not supported by observations does not 
effect a marked redistribution in the wave energy. 

Institute for Advanced Study 
Princeton, N. J.,  September 26, I9U9 
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APPENDIX A 

DEPENDENCE OF PHASE VELOCITY V ON PERIOD P WHEN 

PERIOD IS INCREASED INDEFINITELY 

Only the T?-branch of the first mode will be treated here and in the 

particular case when n = h.^>.    The higher-order modes, as well as those 
of the T]_-branch, can be dealt with similarly.  The problem is to determine 
the limiting form of the root x(S) of equation (35) as 5—^1 - e.  Then 

T
2 = Vii 1 

G-» - er(5.5)/6.5 

(h6) 

j 

Also for a vanishing x all the F's reduce to unity. Now assume that 

►Mx' 6.5 (47) 

as x—^0, and seek to determine the coefficient M from equation (35) 
On retaining only leading terms, equation (35) becomes 

-5-5 + 0.&75X + R.5 - (x/6.5)1(1 + Mx) = 0       •   (U8) 

On annulling the coefficient of x there is obtained 

M = -0.721 = -(1 - 5)[r(5.5)/6.5Jx-6-5 (1*9) 

x = 1.88(1 - S)1/6'5 (50) 
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APPENDIX B 

DETERMINATION OF CUT-OFF PERIOD 

If equation (45) is evaluated for large values of y by using the 
asymptotic forms of the Bessel functions it is found that all modes 
coalesce at a limiting period (5-7 min for n = 4.5), for which the 
phase velocity vanishes. This result can, however, not be relied upon 
since when y becomes of the order of 5 the Bessel function approxi- 
mations in relations .(25) and (26) are no longer valid. In order to 
determine the cut-off period the asymptotic form of W in equation (10) 
has to be obtained when both 5 and x become large and are of the 
same order of magnitude. For this purpose Whittaker's (reference 5, 
p. 339) countour-integral representation for W is used, which can 

be put in the form 

X = xn/2w(x) 

=  (l/2*i)eiJt5r(l + ö)e-x/2xl+n$t-6-l(l + t)S+l+ne-xt dt (51) 

the path starting at • and returning to « after encircling the origin 
in the positive direction, but excluding the point t = -1. Now put 

x = 45 - bo 

t = u - (1/2) 

then near t = -(l/2) there is the expansion 

(52) 

t-S-1(l + t)5+1+ne-xt = (u + i)1+n/U - £) exp£irt5 + (x/2)  + Q(uJ| (53) 

Q(u) = (8b)u + (l6s/3)u3 + (64s/5)u5 + 

X = (l/2*i)r(l + 5)x 1+ni 'E-♦rk - i exp Q(u) du 
(54) 

(55) 

where the path in the u-plane is similar to the former path in the t-plane. 
For large values of 5 and for values of b of the order of 5" I->, 
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the principal contribution to the integral in equation (55) comes from 
the immediate vicinity of the origin.  This can be made evident by putting 

(168/3)u3 = v3 

A = (3/l6) ^S2/3 
(56) 

when the vP-term in equation (5*0 becomes of the order of 5" '->, while 
the expression in brackets in the integrand of equation (55) reduces to 
-2~n to within terms of the order of &_1/3. Hence, 

X « -(l/2*i)2-nx1+nr(l + 5)(3/l65)1/3(7) exp (v3 + Av) dv    (57) 

Here the path starts at ooe1,r/3 an4 terminates at ooe"1Jt/3 after 
encircling the origin in the positive direction.  The integral can be 
evaluated in terms of the Airy function (reference 3f  P- l89)> yielding 

X*  2-nx1+nr(l + 5)(2885)-1/3F(0) 

8  = (l/6)5-1/2|i+& _ x|3/2 

(58) 

F(e) = e1/3rj_i/3(e) + Jl/3(eyj 

< kb 

(59) 

F(e) =ei/3|i_l/3(0) -il/3(eT| 

x > kS 

(60) 
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Equation (6o) shows that "beyond hS,    x(x)  is no longer oscillatory. 
The largest zeros of X are determined from the zeros of F(0)  (refer- 
ence 3,  p. 751) in equation (59): 

01 = 2.383 
^ 

e2 = 5.610 

e3 = 8.657 

(61) 

On substituting expression (59) into the secular equation (35) one finds 
that in the limit of large values of 5 the foots of equation (35) 
coincide with the roots of x- Hence the largest roots of equation (35) 
are given by 

Xi = kb -   (3650-j2) 
1/3 

(62) 

where the G±'s    are given in equation (6l). From equation (62) it 
follows that near the cut-off period 

V/c0-^(A/S) [l + (l/8)(60i/8)
2/3] 

[l + (l/8)(60i/8)2/3j 

> 

P = P 

(63) 

where A is a constant and PB denotes Brunt's period (reference k). 
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Figure 1.-   Dependence of roots   x   of equation (35) on   8   for an atmosphere 
with constant positive temperature gradient,   n = 4.5.   Solid curves for   T2; 

dashed curves for   T      Encircled numbers refer to order of mode. 
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